Fixed Point Iterations of a Pair of Hemirelatively Nonexpansive Mappings
نویسندگان
چکیده
where 〈·, ·〉 denotes the generalized duality pairing. A Banach space E is said to be strictly convex if ‖ x y /2‖ < 1 for all x, y ∈ E with ‖x‖ ‖y‖ 1 and x / y. It is said to be uniformly convex if limn→∞‖xn − yn‖ 0 for any two sequences {xn} and {yn} in E such that ‖xn‖ ‖yn‖ 1 and limn→∞‖ xn yn /2‖ 1. Let UE {x ∈ E : ‖x‖ 1} be the unit sphere of E. Then the Banach space E is said to be smooth provided that
منابع مشابه
Strong Convergence of Monotone Hybrid Method for Maximal Monotone Operators and Hemirelatively Nonexpansive Mappings
We prove strong convergence theorems for finding a common element of the zero point set of a maximal monotone operator and the fixed point set of a hemirelatively nonexpansive mapping in a Banach space by using monotone hybrid iteration method. By using these results, we obtain new convergence results for resolvents of maximal monotone operators and hemirelatively nonexpansive mappings in a Ban...
متن کاملStrong Convergence of the Iterations of Quasi $phi$-nonexpansive Mappings and its Applications in Banach Spaces
In this paper, we study the iterations of quasi $phi$-nonexpansive mappings and its applications in Banach spaces. At the first, we prove strong convergence of the sequence generated by the hybrid proximal point method to a common fixed point of a family of quasi $phi$-nonexpansive mappings. Then, we give applications of our main results in equilibrium problems.
متن کاملStrong Convergence Theorem by Monotone Hybrid Algorithm for Equilibrium Problems, Hemirelatively Nonexpansive Mappings, and Maximal Monotone Operators
We introduce a new hybrid iterative algorithm for finding a common element of the set of fixed points of hemirelatively nonexpansive mappings and the set of solutions of an equilibrium problem and for finding a common element of the set of zero points of maximal monotone operators and the set of solutions of an equilibrium problem in a Banach space. Using this theorem, we obtain three new resul...
متن کاملHybrid Algorithm for Common Fixed Points of Uniformly Closed Countable Families of Hemirelatively Nonexpansive Mappings and Applications
The authors have obtained the following results: 1 the definition of uniformly closed countable family of nonlinear mappings, 2 strong convergence theorem by the monotone hybrid algorithm for two countable families of hemirelatively nonexpansive mappings in a Banach space with new method of proof, 3 two examples of uniformly closed countable families of nonlinear mappings and applications, 4 an...
متن کاملExistence Results of best Proximity Pairs for a Certain Class of Noncyclic Mappings in Nonreflexive Banach Spaces Polynomials
Introduction Let be a nonempty subset of a normed linear space . A self-mapping is said to be nonexpansive provided that for all . In 1965, Browder showed that every nonexpansive self-mapping defined on a nonempty, bounded, closed and convex subset of a uniformly convex Banach space , has a fixed point. In the same year, Kirk generalized this existence result by using a geometric notion of ...
متن کامل